Sound localization

Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance. It may also refer to the methods in acoustical engineering to simulate the placement of an auditory cue in a virtual 3D space (see binaural recording, wave field synthesis).

The sound localization mechanisms of the mammalian auditory system have been extensively studied. The auditory system uses several cues for sound source localization, including time- and level-differences (or intensity-difference) between both ears, spectral information, timing analysis, correlation analysis, and pattern matching.

These cues are also used by other animals, but there may be differences in usage, and there are also localization cues which are absent in the human auditory system, such as the effects of ear movements. Animals with the ability to localize sound have a clear evolutionary advantage. see binaural recording, wave field synthesis

Sound is the perceptual result of mechanical vibrations traveling through a medium such as air or water. Through the mechanisms of compression and rarefaction, sound waves travel through the air, bounce off the pinna and concha of the exterior ear, and enter the ear canal. The sound waves vibrate the tympanic membrane (ear drum), causing the three bones of the middle ear to vibrate, which then sends the energy through the oval window and into the cochlea where it is changed into a chemical signal by hair cells in the organ of corti, which synapse onto spiral ganglion fibers that travel through the cochlear nerve into the brain.

In vertebrates, inter-aural time differences are known to be calculated in the superior olivary nucleus of the brainstem. According to Jeffress, this calculation relies on delay lines: neurons in the superior olive which accept innervation from each ear with different connecting axon lengths. Some cells are more directly connected to one ear than the other, thus they are specific for a particular inter-aural time difference. This theory is equivalent to the mathematical procedure of cross-correlation. However, because Jeffress' theory is unable to account for the precedence effect, in which only the first of multiple identical sounds is used to determine the sounds' location (thus avoiding confusion caused by echoes), it cannot be entirely used to explain the response. Furthermore, a number of recent physiological observations made in the midbrain and brainstem of small mammals have shed considerable doubt on the validity of Jeffress' original ideas

Neurons sensitive to inter-aural level differences (ILDs) are excited by stimulation of one ear and inhibited by stimulation of the other ear, such that the response magnitude of the cell depends on the relative strengths of the two inputs, which in turn, depends on the sound intensities at the ears.

This page was last edited on 4 June 2018, at 13:36.
Reference: https://en.wikipedia.org/wiki/Binaural_hearing under CC BY-SA license.

Related Topics

Recently Viewed