Graphene is a semi-metal with a small overlap between the valence and the conduction bands (zero bandgap material). It is an allotrope (form) of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice. It is the basic structural element of many other allotropes of carbon, such as graphite, diamond, charcoal, carbon nanotubes and fullerenes.

It can be considered as an indefinitely large aromatic molecule, the ultimate case of the family of flat polycyclic aromatic hydrocarbons.

Graphene has many uncommon properties. It is the strongest material ever tested, efficiently conducts heat and electricity, and is nearly transparent. Graphene shows a large and nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets.

Scientists theorized about graphene for years. It had been unintentionally produced in small quantities for centuries, through the use of pencils and other similar graphite applications. It was originally observed in electron microscopes in 1962, but it was studied only while supported on metal surfaces. The material was later rediscovered, isolated, and characterized in 2004 by Andre Geim and Konstantin Novoselov at the University of Manchester. Research was informed by existing theoretical descriptions of its composition, structure, and properties. This work resulted in the two winning the Nobel Prize in Physics in 2010 "for groundbreaking experiments regarding the two-dimensional material graphene."

"Graphene" is a combination of "graphite" and the suffix -ene, named by Hanns-Peter Boehm and colleagues, who produced and observed single-layer carbon foils in 1962.

Boehm et al. introduced the term graphene in 1986 to describe single sheets of graphite. Graphene can be considered an "infinite alternant" (only six-member carbon ring) polycyclic aromatic hydrocarbon.

This page was last edited on 17 June 2018, at 15:04 (UTC).
Reference: under CC BY-SA license.

Related Topics

Recently Viewed