Horizontal gene transfer

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring. HGT is an important factor in the evolution of many organisms.

Horizontal gene transfer is the primary mechanism for the spread of antibiotic resistance in bacteria, plays an important role in the evolution of bacteria that can degrade novel compounds such as human-created pesticides and in the evolution, maintenance, and transmission of virulence. It often involves temperate bacteriophages and plasmids. Genes responsible for antibiotic resistance in one species of bacteria can be transferred to another species of bacteria through various mechanisms such as F-pilus, subsequently arming the antibiotic resistant genes' recipient against antibiotics, which is becoming medically challenging to deal with.

Most thinking in genetics has focused upon vertical transfer, but horizontal gene transfer is important, and among single-celled organisms is perhaps the dominant form of genetic transfer. It is also postulated that HGT promotes the maintenance of a universal life biochemistry and, subsequently, the universality of the genetic code. In other words, HGT is the "power" that "watches over" the universality of the genetic code and forces it into a "lingua franca" of life on Earth. This allows "genetic commerce" or the dissemination of biological novelty through the biosphere.

Artificial horizontal gene transfer is a form of genetic engineering.

Horizontal genetic transfer was first described in Seattle in 1951, in a paper demonstrating that the transfer of a viral gene into Corynebacterium diphtheriae created a virulent strain from a non-virulent strain, also simultaneously solving the riddle of diphtheria (that patients could be infected with the bacteria but not have any symptoms, and then suddenly convert later or never), and giving the first example for the relevance of the lysogenic cycle. Inter-bacterial gene transfer was first described in Japan in a 1959 publication that demonstrated the transfer of antibiotic resistance between different species of bacteria. In the mid-1980s, Syvanen predicted that lateral gene transfer existed, had biological significance, and was involved in shaping evolutionary history from the beginning of life on Earth.

As Jian, Rivera and Lake (1999) put it: "Increasingly, studies of genes and genomes are indicating that considerable horizontal transfer has occurred between prokaryotes" (see also Lake and Rivera, 2007). The phenomenon appears to have had some significance for unicellular eukaryotes as well. As Bapteste et al. (2005) observe, "additional evidence suggests that gene transfer might also be an important evolutionary mechanism in protist evolution."

This page was last edited on 15 March 2018, at 20:23.
Reference: https://en.wikipedia.org/wiki/Horizontal_gene_transfer under CC BY-SA license.

Related Topics

Recently Viewed