Kingdom (biology)

In biology, kingdom (Latin: regnum, plural regna) is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla. Traditionally, some textbooks from the United States used a system of six kingdoms (Animalia, Plantae, Fungi, Protista, Archaea/Archaeabacteria, and Bacteria/Eubacteria) while textbooks in countries like Great Britain, India, Greece, Australia, Latin America and other countries used five kingdoms (Animalia, Plantae, Fungi, Protista and Monera). Some recent classifications based on modern cladistics have explicitly abandoned the term "kingdom", noting that the traditional kingdoms are not onophyletic, i.e., do not consist of all the descendants of a common ancestor.

When Carl Linnaeus introduced the rank-based system of nomenclature into biology in 1735, the highest rank was given the name "kingdom" and was followed by four other main or principal ranks: class, order, genus and species. Later two further main ranks were introduced, making the sequence kingdom, phylum or division, class, order, family, genus and species. In 1990, the rank of domain was introduced above kingdom.

Prefixes can be added so subkingdom (subregnum) and infrakingdom (also known as infraregnum) are the two ranks immediately below kingdom. Superkingdom may be considered as an equivalent of domain or empire or as an independent rank between kingdom and domain or subdomain. In some classification systems the additional rank branch (Latin: ramus) can be inserted between subkingdom and infrakingdom, e.g., Protostomia and Deuterostomia in the classification of Cavalier-Smith.

From around the mid-1970s onwards, there was an increasing emphasis on comparisons of genes at the molecular level (initially ribosomal RNA genes) as the primary factor in classification; genetic similarity was stressed over outward appearances and behavior. Taxonomic ranks, including kingdoms, were to be groups of organisms with a common ancestor, whether monophyletic (all descendants of a common ancestor) or paraphyletic (only some descendants of a common ancestor). Based on such RNA studies, Carl Woese thought life could be divided into three large divisions and referred to them as the "three primary kingdom" model or "urkingdom" model. In 1990, the name "domain" was proposed for the highest rank. This term represents a synonym for the category of dominion (lat. dominium), introduced by Moore in 1974. Unlike Moore, Woese et al. (1990) did not suggest a Latin term for this category, which represents a further argument supporting the accurately introduced term dominion. Woese divided the prokaryotes (previously classified as the Kingdom Monera) into two groups, called Eubacteria and Archaebacteria, stressing that there was as much genetic difference between these two groups as between either of them and all eukaryotes.

According to genetic data, although eukaryote groups such as plants, fungi, and animals may look different, they are more closely related to each other than they are to either the Eubacteria or Archaea. It was also found that the eukaryotes are more closely related to the Archaea than they are to the Eubacteria. Although the primacy of the Eubacteria-Archaea divide has been questioned, it has been upheld by subsequent research. There is no consensus on how many kingdoms exist in the classification scheme proposed by Woese.

In 2004, a review article by Simpson and Roger noted that the Protista were "a grab-bag for all eukaryotes that are not animals, plants or fungi". They held that only monophyletic groups should be accepted as formal ranks in a classification and that - while this approach had been impractical previously (necessitating "literally dozens of eukaryotic 'kingdoms'") - it had now become possible to divide the eukaryotes into "just a few major groups that are probably all monophyletic".

This page was last edited on 24 May 2018, at 10:35.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed