Paleontology

Palais de la Decouverte Tyrannosaurus rex p1050042.jpg
Paleontology or palaeontology (/ˌpliɒnˈtɒləi, ˌpæli-, -ən-/) is the scientific study of life that existed prior to, and sometimes including, the start of the Holocene Epoch (roughly 11,700 years before present). It includes the study of fossils to determine organisms' evolution and interactions with each other and their environments (their paleoecology). Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of Georges Cuvier's work on comparative anatomy, and developed rapidly in the 19th century. The term itself originates from Greek παλαιός, palaios, "old, ancient", ὄν, on (gen. ontos), "being, creature" and λόγος, logos, "speech, thought, study".

Paleontology lies on the border between biology and geology, but differs from archaeology in that it excludes the study of anatomically modern humans. It now uses techniques drawn from a wide range of sciences, including biochemistry, mathematics, and engineering. Use of all these techniques has enabled paleontologists to discover much of the evolutionary history of life, almost all the way back to when Earth became capable of supporting life, about 3.8 billion years ago. As knowledge has increased, paleontology has developed specialised sub-divisions, some of which focus on different types of fossil organisms while others study ecology and environmental history, such as ancient climates.

Body fossils and trace fossils are the principal types of evidence about ancient life, and geochemical evidence has helped to decipher the evolution of life before there were organisms large enough to leave body fossils. Estimating the dates of these remains is essential but difficult: sometimes adjacent rock layers allow radiometric dating, which provides absolute dates that are accurate to within 0.5%, but more often paleontologists have to rely on relative dating by solving the "jigsaw puzzles" of biostratigraphy. Classifying ancient organisms is also difficult, as many do not fit well into the Linnaean taxonomy that is commonly used for classifying living organisms, and paleontologists more often use cladistics to draw up evolutionary "family trees". The final quarter of the 20th century saw the development of molecular phylogenetics, which investigates how closely organisms are related by measuring how similar the DNA is in their genomes. Molecular phylogenetics has also been used to estimate the dates when species diverged, but there is controversy about the reliability of the molecular clock on which such estimates depend.

The simplest definition is "the study of ancient life". Paleontology seeks information about several aspects of past organisms: "their identity and origin, their environment and evolution, and what they can tell us about the Earth's organic and inorganic past".

Paleontology is one of the historical sciences, along with archaeology, geology, astronomy, cosmology, philology and history itself. This means that it aims to describe phenomena of the past and reconstruct their causes. Hence it has three main elements: description of the phenomena; developing a general theory about the causes of various types of change; and applying those theories to specific facts. When trying to explain past phenomena, paleontologists and other historical scientists often construct a set of hypotheses about the causes and then look for a smoking gun, a piece of evidence that indicates that one hypothesis is a better explanation than others. Sometimes the smoking gun is discovered by a fortunate accident during other research. For example, the discovery by Luis Alvarez and Walter Alvarez of an iridium-rich layer at the CretaceousTertiary boundary made asteroid impact and volcanism the most favored explanations for the Cretaceous–Paleogene extinction event.

The other main type of science is experimental science, which is often said to work by conducting experiments to disprove hypotheses about the workings and causes of natural phenomena – note that this approach cannot confirm a hypothesis is correct, since some later experiment may disprove it. However, when confronted with totally unexpected phenomena, such as the first evidence for invisible radiation, experimental scientists often use the same approach as historical scientists: construct a set of hypotheses about the causes and then look for a "smoking gun".

This page was last edited on 16 June 2018, at 15:28 (UTC).
Reference: https://en.wikipedia.org/wiki/Palaeontology under CC BY-SA license.

Related Topics


Warning: DOMDocument::loadHTML(): Tag wbr invalid in Entity, line: 1 in /home/ashver/webapps/infospaze/index.php on line 389

Warning: DOMDocument::loadHTML(): Tag wbr invalid in Entity, line: 1 in /home/ashver/webapps/infospaze/index.php on line 389

Recently Viewed